48,838 research outputs found

    Higher Order Graviton Scattering in M(atrix) Theory

    Get PDF
    In matrix theory the effective action for graviton-graviton scattering is a double expansion in the relative velocity and inverse separation. We discuss the systematics of this expansion and subject matrix theory to a new test. Low energy supergravity predicts the coefficient of the v6/r14v^6/r^{14} term, a two-loop effect, in agreement with explicit matrix model calculation.Comment: 15 pages, 1 epsf figure, LaTeX. Minor change

    Magnetically tuned spin dynamics resonance

    Full text link
    We present the experimental observation of a magnetically tuned resonance phenomenon resulting from spin mixing dynamics of ultracold atomic gases. In particular we study the magnetic field dependence of spin conversion in F=2 87Rb spinor condensates in the crossover from interaction dominated to quadratic Zeeman dominated dynamics. We discuss the observed phenomenon in the framework of spin dynamics as well as matter wave four wave mixing. Furthermore we show that the validity range of the single mode approximation for spin dynamics is significantly extended in the regime of high magnetic field

    Linear Sigma Models with Torsion

    Full text link
    Gauged linear sigma models with (0,2) supersymmetry allow a larger choice of couplings than models with (2,2) supersymmetry. We use this freedom to find a fully linear construction of torsional heterotic compactifications, including models with branes. As a non-compact example, we describe a family of metrics which correspond to deformations of the heterotic conifold by turning on H-flux. We then describe compact models which are gauge-invariant only at the quantum level. Our construction gives a generalization of symplectic reduction. The resulting spaces are non-Kahler analogues of familiar toric spaces like complex projective space. Perturbatively conformal models can be constructed by considering intersections.Comment: 40 pages, LaTeX, 1 figure; references added; a new section on supersymmetry added; quantization condition revisite

    Exact Solution of Strongly Interacting Quasi-One-Dimensional Spinor Bose Gases

    Full text link
    We present an exact analytical solution of the fundamental system of quasi-one-dimensional spin-1 bosons with infinite delta-repulsion. The eigenfunctions are constructed from the wave functions of non-interacting spinless fermions, based on Girardeau's Fermi-Bose mapping, and from the wave functions of distinguishable spins. We show that the spinor bosons behave like a compound of non-interacting spinless fermions and non-interacting distinguishable spins. This duality is especially reflected in the spin densities and the energy spectrum. We find that the momentum distribution of the eigenstates depends on the symmetry of the spin function. Furthermore, we discuss the splitting of the ground state multiplet in the regime of large but finite repulsion.Comment: Revised to discuss large but finite interaction

    Analytical ground state for the three-band Hubbard model

    Full text link
    For the calculation of charge excitations as those observed in, e.g., photo-emission spectroscopy or in electron-energy loss spectroscopy, a correct description of ground-state charge properties is essential. In strongly correlated systems like the undoped cuprates this is a highly non-trivial problem. In this paper we derive a non-perturbative analytical approximation for the ground state of the three-band Hubbard model on an infinite, half filled CuO_2 plane. By comparison with Projector Quantum Monte Carlo calculations it is shown that the resulting expressions correctly describe the charge properties of the ground state. Relations to other approaches are discussed. The analytical ground state preserves size consistency and can be generalized for other geometries, while still being both easy to interpret and to evaluate.Comment: REVTeX, 8 pages, 6 figures, to appear in Phys. Rev.

    String vacua with flux from freely-acting obifolds

    Full text link
    A precise correspondence between freely-acting orbifolds (Scherk-Schwarz compactifications) and string vacua with NSNS flux turned on is established using T-duality. We focus our attention to a certain non-compact Z_2 heterotic freely-acting orbifold with N=2 supersymmetry (SUSY). The geometric properties of the T-dual background are studied. As expected, the space is non-Kahler with the most generic torsion compatible with SUSY. All equations of motion are satisfied, except the Bianchi identity for the NSNS field, that is satisfied only at leading order in derivatives, i.e. without the curvature term. We point out that this is due to unknown corrections to the standard heterotic T-duality rules.Comment: 13 pages, no figures; v2: references added and rearranged, version to appear in JHE
    corecore